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ABSTRACT  
This article proposes a mathematical optimization procedure designed to generate an economical measurement 

model for determining the risk of decision error (customer risk). The model includes an optimal guardbanding to 

reduce the impacts of measurement errors .A mathematical model is provided as an example, and conclusions 

are drawn. 
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I. Introduction 
In many manufacturing industries, 

measurement procedures associated with the 

inspection of products have become an integral part 

of quality improvement and control. Even so, some 

measurement errors are inevitable due to changes in 

operators and/or devices, regardless of how carefully 

the measurement procedures are designed or 

maintained .There have been many research efforts to 

reduce the impact of measurement errors and to 

improve quality control. The most immediate 

approach may be to control measurement error by the 

selection of an optimal guardbanding [1, 2, 3]. 

 

II. Determination of Guardbanding 

Width 
Measurement precision may be improved by 

reducing measurement variability. Chandra and 

schall [4] proposed the use of repeated measurements 

to reduce measurement variability, the average of 

these repeated measurements is used to determine the 

conformance of a product to the specifications. 

Let X be the actual value of the quality characteristic 

of interest, which is normally distributed with a mean 

of µ and a variance of 
2

X .  If we denote the 

measured value from a single measurement as Y, let 

us further assume that the conditional distribution of 

Y, given that X = x, is a normal distribution with a 

mean of x and a variance
2

|xy . 

Suppose that n measurements are repeatedly taken 

and each measurement has the same variability. 

Letting𝑌 be the average of n measurements, it is 

apparent that the conditional distribution of 𝑌, given 

that X = x, is a normal distribution with a mean of x 

and a variance of 

2

|xy
 

,where 
n

xy

xy

2

2


  . As a means of 

reducing the impact of measurement errors, the use of 

guard bands has been widely implemented since 

being introduced by Eagle [5].  

In many practical situations, a false 

acceptance of defects incurs much larger economic 

penalties than a false rejection of conforming 

products. From this perspective, many manufacturers 

impose a guardbanding to help minimize the penalty 

associated with false acceptance, at the cost of an 

increased risk of false rejection. The effects of a 

guardbanding are depicted in Fig. 1, where L and U 

represent the lower and upper specification limits.  

The large curve represents the density curve of the 

actual value of the quality characteristic, X, while the 

small curve represents the density curve of the 

average measurements given the actual value, 

)( XY . It can be observed that the probability of 

false acceptance decreases by imposing the 

guardbanding (Fig. 1 (a)) while the risk associated 

with false rejection increases (Fig. 1(b)). It is a 

current practice to set the guardbanding based on 

engineering experiences or on a trial-and-error basis. 
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Figure 1.Measurement errors with and without guard band.(a) False acceptance error with and without guard 

band.(b) False rejection error with and without guard band. 

 

To meet customer requirements and to avoid 

the high cost of passing bad product to customers, the 

consumer’s risk should not exceed a specified value. 

In this case, the guardbanding υ and ω are set inside 

the specification limits L and U. Let υ = L+𝜀𝐿 and ω = 

U- 𝜀𝑈 , then 𝜀𝐿  and 𝜀𝑈  are positive. On the other hand, 

if the consumer’s risk exceeds the specified value, 

then 𝜀𝐿  or 𝜀𝑈  may be negative. In this paper, we 

focus on meeting customer’s requirements so that 𝜀𝐿  

and 𝜀𝑈  are positive. In general, the consumer’s risk 

should be much lower than the producer’s risk 

because the cost of letting bad product get to 

consumers is usually much higher than the cost of 

rejecting good product. The difference between the 

product tolerance and the length of the guardbanding  

interval is (U - L) - (υ - ω) = (𝜀𝐿 +𝜀𝑈). The optimal 

guardbanding interval (υ, ω) or the pair (𝜀𝐿 , 𝜀𝑈) with 

the smallest (𝜀𝐿 +𝜀𝑈) can be determined so that β ≤ β0 

where β0 preset level and the expression for β are 

given by Eq (20). 

 

III. Study of Customer Risk 
The customer risk is the percentage of non-

conforming products that are delivered, and accepted 

by the customer. it is calculated as the product of the 

probability of making a " non-conforming " product  

(property of the production process)  by the 

(conditional) probability of measuring "compliant"  

(i.e. in the tolerance). 

Let L  and U  denote the widths of 

guardbanding associated with the lower and upper 

specification limits , respectively. For the simplicity 

of notation, υ = L+𝜀𝐿 and ω = U- 𝜀𝑈 . Hereafter, υ and 

ω are referred to as the lower and upper inspection 

limits, respectively. Since the conformance of a 

product is determined on the basis of repeated 

measurements, a product passes the inspection and is 

shipped to the customer if 𝑦ϵ[υ,ω] and 

𝑅𝐶= 𝛽 represent the customer risk (the risk of 

delivering a product that is intrinsically unacceptable 

but that is accepted by the control means),i.e.,𝑦 

ϵ[υ,ω] and Xɇ[L,U]. 

The expected cost by falsely accepting a 

defect, denoted by  𝛽` , is the conditional probability 

that a product will be accepted given that it is 

defective. it is then given by 

1 ( [ , ])P x L L


  

  
                                        (1)                            

Where P(x[-L, L]) is the probability that the 

value being measured lies in [-L, L].    

  

𝑅𝐶=𝛽=   ℎ(𝑥, 𝑦)
+∞

𝑈
𝑑𝑥𝑑𝑦

𝜔

𝜐
+   ℎ(𝑥, 𝑦)

𝐿

−∞
𝑑𝑥𝑑𝑦

𝜔

𝜐
,

                                         (2) 

 

Whereℎ(𝑥, 𝑦) is the joint density function of 

X and 𝑌. It can easily be shown that X and Y jointly 



Hicham Mezouara et al Int. Journal of Engineering Research and Applications            www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6(Version 1), June 2014, pp.16-20 

 www.ijera.com                                                                                                                                18 | P a g e  

follow a bivariate normal distribution with a mean 

vector of (μ, μ) and a variance–covariance matrix of 

Σ given by 

 

Σ =  
var x cov x, y 

cov x, y var y 
   =  

σ𝑥
2 𝜎𝑥

2

𝜎𝑥
2 𝜎𝑦

2                  (3) 

Where 𝜎𝑦
2 represents the variance of the marginal 

distribution of 𝑌, and  𝜎𝑦
2 = 𝜎𝑥

2 + 𝜎𝑦|𝑥
2  . Note that γ, 

the correlation coefficient of X and Y , is defined as   

     

 

,        (4)       

  

The marginal distribution X andY , assume that the 

density ℎ(𝑥, 𝑦) exists, we denote by )|( xyg and 

f(x) [6,7,8]. 

And  ℎ(𝑥, 𝑦) =  )|( xyg  f(x)      ,               (5) 

where   

)|( xyg  =  
1

 2𝜋 
xy|


𝑒

− 
 𝑦 − 𝑥 2

2𝜎𝑦 |𝑥
2
     ,              (6) 

and  

f(x) =  
1

 2𝜋 x
𝑒

−
 𝑥− 𝜇  2

2𝜎𝑥2     ,                                       (7) 

 

The first double integral in Eq. (2) can be 

written as 

 

   
 









U U

dxydyxhydxdyxh ),(),(  

  



U

dxxfydxyg





)(])|([  ,         (8) 

 

where )|( xyg and f(x) are the conditional 

distribution of Y  since X=x and the marginal 

distribution of X, respectively. Noting that 

 

),( 2

|xy

xNY
xX




and 

),( 2

xNX         ,           (9) 

Let   z =  
𝑦−𝑥

xy|


 , and   υ ≤  𝑦 ≤ ω   is then given   

υ−𝑥

xy|


   ≤ z ≤ 
ω−𝑥

xy|


                  ,         (10) 

And λ =  
𝑥−𝜇

σx
 , with U ≤  𝑥 ≤ +∞  is then given  

𝑈−𝜇

σx
   ≤ λ ≤ +∞            ,                                          (11) 

Can be written as Eq.(8): 

   
 






U U

x

x

xy

xy

dxxfdzzdxxfydxyg














|

|

)(])([)(])|([










U xyxy

dxxf
xx

)()]()([
||









 
=  
 







U xyUxy

dxxf
x

dxxf
x

)()()()(

||







 

=

 














x

x
U U xy

x

xy

x dd



 










)()

)(
()()

)(
(

||

                           

(12) 

 

Here, (.) and (.)
 

represent the 

cumulative distribution and probability density 

functions of the standard normal distribution, 

respectively [9]. Using the following identity, 

 










K b

b
K

b

a
BVNdba )

1
;;

1
()()(

22


                (13) 

where ),,( BVN  represents a function with 

two variables standard normal distribution with a 

correlation coefficient of  , which is defined by 

 

 
  







 






 dxdy

yxyx
BVN )

)1(2

2
exp(

12

1
),,(

2

22

2

                                                                              (14)

 

 

With              

𝜑 𝑥   = 
𝑑𝛷 𝑥 

𝑑𝑥
   ,                                                      (15) 

 

𝛷 𝑥 =  𝜑 𝑥 𝑑𝑥
ℎ

−∞
    ,                        (16) 

and     

 

𝜑 𝑥 =  
1

 2𝜋
exp⁡(−

𝑥2

2
) ,                         (17) 

Eq.(12) can be simplified to  

 

 






 U

ydxdyxh ),( ;;(
2

|

2
x

xyx

U
BVN







 






) );;(
2

|

2



















x
xyx

U
BVN ,    (18) 

 

y

x

YX

YX




 




)var()var(

),cov(
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Similarly, it can be shown that the second 

integral in Eq. (2) becomes: 

 

 
 











 






L

xyxxyx

ydxdyxh )()(),(
2

|

22

|

2

 

















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2

|

2
x

xyx

L
BVN ) 

);;(
2

|

2



















x
xyx

L
BVN    ,    (19) 

 

Using Eqs . (18) and (19),the customer risk 

Rc can be written as  

 

)()(

yy

Rc





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


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);;();;( 
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
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


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
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
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




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











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
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



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xyxy
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BVN

U
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   ,                        (20) 

 

IV. A Numerical Example 
To demonstrate the proposed model, 

consider an example of indirect tensile tests of 

stiffness  modulus, according to standard NF EN 

12697-26:2004 [10],tests on cylindrical specimens 

100mm in diameter, with thickness of 53mm and 

2451kg / m³ density, were carried out under the 

conditions listed in Table 1. 

Horizontal deformation under 5  ± 2 µm 

Frequency 10 Hz 

Number of pulses 10 

The pulse repetition period 3 ± 0.1 s 

Rise Time in load 124 ± 4 ms 

Poisson's ratio 0.35 

Table1. Conditions of the test of the proposed model. 

We obtained a Stiffness modulus
*

E = 6696 

MPa, with an estimated standard deviation (σ) of 

382.50 MPa with
10

*
*

iE
E


 , n=10 (the average 

shear modulus corrected).  The uncertainty has been 

calculated by the testing laboratory using an 

analytical method based on [11].  The requirements 

agreed upon between the customer and the supplier 

specified a lower specification limit, L, of 6000 MPa, 

and an upper specification limit, U, of 10000 MPa. 

The supplier has taken ten cylindrical 

specimens (n = 10) for the control, the variability of 

the 10 measures is given by 

MPa
n

xni
xy 296

1

)( 2

| 



         (21) 

with 

 
2

|

22

xyxy
                                   (22) 

 

MPa
n

xyx

xyxy

78.393
2

|

2

2

|

2









              

(23) 

and 

97.0
)var().var(

),cov(


y

x

YX

YX




               (24) 

 

Solving the mathematical model requires a 

lot of computing resources mainly due to the 

evaluation of bivariate normal probabilities.  

However, an approximation algorithm, developed 

with the free software R programming language [12], 

was utilized to evaluate the integrals bivariate 

normal. 

We suppose that 𝛽0= 0.70648 % ,The 

optimal solution to the example problem is found to 

be  * = 6000 MPa, 
 
 * = 9999 MPa , 𝜀𝐿 =1.00 

MPa  and 

𝜀𝑈  = 0.00 MPa , n = 10, with a customer risk of 

0.70644 % , Guardbanding  provide a way of 

assuring that good product would be accepted 

99.23% . Numerical results are summarized in Table 

2. 

 

 

 

UL  /  0.00 0.25 0.50 0.75 1.00 

0.00 0.70665 0.70669 0.70675 0.70679 0.70684 

0.25 0.70660 0.70664 0.70669 0.70674 0.70678 

0.50 0.70654 0.70654 0.70664 0.70668 0.70673 

0.75 0.70649 0.70653 0.70658 0.70663 0.70668 

1.00 0.70644 0.70648 0.70653 0.70658 0.70662 

Table2.Numerical results of the customer risk of the stiffness modulus. 
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V. Conclusion 
This study has described the risk of decision 

error (consumer's risk) when monitoring production.  

A mathematical optimization model has been 

proposed that integrates the notion of an optimal 

guardbanding to minimize the impact of 

measurement errors and to reduce the risk of false 

acceptance (consumer's risk).  A numerical example 

was provided that demonstrates the proposed 

optimization model. 
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